

 Document Number: XXXXXX

Intel® Integrated Sensor Solution

Utility

User Guide

November 2020

Revision 1.4

Intel Confidential

2 Intel Confidential CDI/IBP#: XXXXXX

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning

Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter

drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service

activation. Learn more at Intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any

damages resulting from such losses.

The products described may contain design defects or errors known as errata which may cause the product to deviate from

published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness

for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or

usage in trade.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service

activation. Learn more at intel.com, or from the OEM or retailer.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel

product specifications and roadmaps.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-

4725 or visit www.intel.com/design/literature.htm.

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2020, Intel Corporation. All rights reserved.

CDI/IBP#: XXXXXX Intel Confidential 3

Contents

1 Introduction .. 6

1.1 Overview ... 6
1.2 Operating System Support ... 6
1.3 Error Return ... 6

2 Intel® Integrated Sensor Solution Utility ... 7

2.1 Purpose ... 7
2.2 System Requirements ... 7
2.3 Required Files and Installation: ... 7
2.4 Intel® ISS Utility Usage ... 8
2.5 Options Specification ... 10

2.5.1 Examples: .. 10
2.6 ISSU -BIST Functionality ... 10

2.6.1 Examples: .. 11
2.7 BIST Levels Specifications .. 12
2.8 ISSU -INFO Functionality ... 16
2.9 ISSU –PDT Functionality .. 19
2.10 ISSU –I2C Functionality ... 21
2.11 ISSU –NVM Functionality ... 22

3 Appendix A: Error List .. 25

4 Appendix B: Get Decompressed ISS Binary File ... 28

Figures

Figure 2-1. ISSU Command Usage and Examples .. 9
Figure 2-2. Example of “BIST Level 0” Functionality ... 12
Figure 2-3. Example of “BIST Level 1” Functionality ... 13
Figure 2-4. Example of “BIST Level 2” Functionality ... 14
Figure 2-5. Example of “BIST Level 3” Functionality ... 15
Figure 2-6. Example of -INFO Output ... 17
Figure 2-7. Example of -BOM Output .. 18
Figure 2-8. Example of -SensorList Output .. 19
Figure 2-9. Example of “GetPDT” Functionality .. 20
Figure 2-10. Example of “SetPDT” Functionality ... 20
Figure 2-11. Example of “I2C Calibrate” Functionality ... 21
Figure 2-12. Example of “I2C calibrate and update PDT” Functionality 22
Figure 2-13. Example of “GetExceptions”/”GetErrorLog0”/”GetUserData1”

Functionality ... 23
Figure 2-14. Example of “ParseExceptions” Functionality 24

4 Intel Confidential CDI/IBP#: XXXXXX

Tables

Table 2-1. Commands Specification ... 8
Table 2-2. -BIST [-arguments] .. 11
Table 2-3. BIST Level 1 Connectivity .. 13
Table 2-4. BIST Level 2 Calibration .. 14
Table 2-5. BIST Level 3 Sensors BIST .. 14
Table 2-6. -INFO [-arguments] .. 16
Table 2-7. -INFO Command Returns .. 16
Table 2-8. –PDT [-arguments] ... 19
Table 2-9. –I2C [-arguments] ... 21
Table 2-10. –NVM [-arguments] .. 22

CDI/IBP#: XXXXXX Intel Confidential 5

Revision History

Document
Number

Revision
Number

Description Revision Date

XXXXXX 0.8 Review and return July 2016

XXXXXX 0.9 Added Yocto Linux support December 2016

XXXXXX 1.0 Added I2C calibrate command and EFI support February 2017

XXXXXX 1.1 Added SensorList function June 2017

XXXXXX 1.2 Added EClite BIST function July 2018

XXXXXX 1.3 Added NVM file related function August 2018

XXXXXX 1.4 Added some test notes of BIST tests. November 2020

Introduction

6 Intel Confidential CDI/IBP#: XXXXXX

1 Introduction

1.1 Overview

This document will describe the Intel® Integrated Sensor Solution Utility tool which is

a stand-alone tool for use by OEMs and ODMs. The tool encompasses several different
sensor tests and functionalities into a single tool.

The Intel® Integrated Sensors Solution Utility (or ISSU) will be provided as part of
the Intel® ISS kit and will be located in:

• SW\ISSU

This folder includes the following:

• Windows* folder (for win32)

• Windows* 64 folder (for win64)

• Linux folder (for Yocto Linux 64bit)

• EFI64 folder (for UEFI 64bit)

• Intel(R) Integrated Sensor Solution Utility User Guide.pdf

The tool provides several different sets of functionality:

1. Information gathering about Intel® ISS

2. BIST sensor and ECLITE functionality

3. Updating and retrieving the Intel® ISS PDT file

4. Calibrating I2C bus functionality

5. Retrieving and parse NVM file functionality

1.2 Operating System Support

OS SUPPORT Y/N

EFI Shell 64 bit Y

Windows PE 64bit & 32bit Y

Windows 10 DT 64bit & 32bit Y

Windows 10 PE 64bit & 32bit Y

Yocto Linux (GLIBCXX_3.4.21, Kernel 4.1.27) 64bit Y

1.3 Error Return

Intel® ISS Utility will return 0 for success and a value of 1 to indicate an error. A
detailed error code is displayed on the screen.

Intel® Integrated Sensor Solution Utility

CDI/IBP#: XXXXXX Intel Confidential 7

2 Intel® Integrated Sensor

Solution Utility

2.1 Purpose

The Intel® Integrated Sensor Solution Utility (or Intel® ISSU) performs a number of
useful functions that work with the Intel® Integrated Sensor Solution. These include
conducting sensor self-tests, retrieving information about the Intel® Integrated

Sensor Solution status and components, and getting or setting the Intel® ISS PDT

configuration file.

2.2 System Requirements

Intel® ISSU runs on the OSs described in section” Operating System Support”. The

tool will execute only on systems that have the Intel® ISS enabled and running.

2.3 Required Files and Installation:

The Intel® ISS utility main executable is ISSU.exe for windows version, ISSU for

Linux version, ISSU.efi for EFI version.

For windows version, the following files must be in the same directory as ISSU.exe:

• For win32: Idrvdll.dll, Pmxdll.dll

• For win64: Idrvdll32e.dll, Pmxdll32e.dll

For windows version, the installation of the following driver is required for Intel® ISSU
to run:

• Intel® Integrated Sensor Solution

• ISS Dynamic Bus Enumerator

• HID PCI Minidriver for ISS

For Linux version, the installation of the following driver is required for Intel® ISSU to
run:

• intel_ishtp

• intel_ish_ipc

• intel_ishtp_hid

• intel_ishtp_clients

For all the examples/images described in this document, it would use windows version
as reference. Linux/EFI version of the tool should have similar behavior except special
notes declared in detailed sections.

Intel® Integrated Sensor Solution Utility

8 Intel Confidential CDI/IBP#: XXXXXX

2.4 Intel® ISS Utility Usage

The tool is divided into several commands. Each command has its own functionality

and specific arguments.

In addition to arguments that are specific per commend, there are also Options.

Options are arguments that are available for all commands.

The tool command line is structured as below:

• ISSU [-command] [-arguments] [-options]

Table 2-1. Commands Specification

Option Description

No option Displays the help screen

-BIST Executes ISS built-in self-tests; Retrieves ECLite BIST results if

eligible.

-INFO Returns information about ISS status and configurations

-PDT Allows to get or set the PDT

-I2C Allows to calibrate specific I2C bus

-NVM Allows to get or parse specific file in NVM

-EXP Shows examples of how to use the tool.

Each command (BIST/PDT/Info) has the -exp command available

and will show specific command examples for the functionality

-H or -?* Displays the usage screen.

Each command (BIST/PDT/Info) has the -h command available and

will show specific help menu for the functionality

*Note: “-?” is not supported in EFI version

-VER Shows the version of the tool

-ERRLIST Return a list of available codes

Intel® Integrated Sensor Solution Utility

CDI/IBP#: XXXXXX Intel Confidential 9

Figure 2-1. ISSU Command Usage and Examples

Intel® Integrated Sensor Solution Utility

10 Intel Confidential CDI/IBP#: XXXXXX

2.5 Options Specification

Options are generic for the tool and are available for all commands i.e.:

• Usage

• ISSU <<COMMAND: -BIST|-INFO|-PDT|-I2C>> <<COMMAND SPECIFIC
ARGUMENTS>> [-Verbose] [-Page]

Option Description

Verbose Displays the maximum information available for operations the tool is performing.

Page When the output exceeds screen size the output will pause and wait for any key

press to proceed.

2.5.1 Examples:

• ISSU -BIST -TEST 3 -Verbose -Page

• ISSU -INFO -Page

• ISSU -PDT –SetPDT file.bin –Verbose

• ISSU -I2C –Calibrate 1 -UpdatePDT

2.6 ISSU -BIST Functionality

The BIST functionality will perform several levels of integrated self-tests. The test

level desired can be specified as part of the arguments.

Note: Do not run Intel SensorViewer tool during BIST tests.

Note: Some tests may be implemented by the sensor vendor. These tests are not

mandatory.

Running the -BIST functionality with no arguments will result in running the default
BIST level for all sensors and retrieve ECLite BIST results if eligible. The default BIST

level is test level 3.

Note: Up to BIST level 3, each BIST level also executes the levels below it.

For example:

• BIST level 3 will execute BIST level 3, 2, 1, 0 and ECLite if eligible.

• BIST level 2 will execute BIST level 2, 1, 0 and ECLite if eligible.

• BIST level 1 will execute BIST level 1, 0 and ECLite if eligible.

Intel® Integrated Sensor Solution Utility

CDI/IBP#: XXXXXX Intel Confidential 11

Table 2-2. -BIST [-arguments]

Option Description

No option Run default BIST level for all sensors on system

-h|-?* Returns the help screen for ISSU –BIST

*Note “-?” is not supported in EFI version

-EXP Shows detailed examples of how to use the BIST command

-TEST <level> Executes test level indicated. Single test level is possible per command

line and will be executed for all sensors on system unless the -LUID

argument is specified

-ALL Runs all available BISTs (may be higher level than default level) for all

sensors on system unless the -LUID argument is specified, and retrieve

ECLITE test results if enabled.

-LUID

<luid1,luid2…>

Specifies which sensors to run the BIST on. More than one LUID may be

specified as an argument (separated with “,”).

-ECLITE Retrieve ECLITE test results individually.

2.6.1 Examples:

• ISSU -BIST

• ISSU -BIST -ALL

• ISSU -BIST -test 3

• ISSU -BIST -test 2 -LUID 0073000100010002

• ISSU -BIST -test 2 -LUID 0073000100010002,020F000100080042

• ISSU -BIST -ALL -Verbose –Page

• ISSU -BIST -ALL -LUID 0073000100010002

Intel® Integrated Sensor Solution Utility

12 Intel Confidential CDI/IBP#: XXXXXX

2.7 BIST Levels Specifications

Level BIST Level 0: Configuration

Test

Specifics

BIST level 0 checks:

1. FW is alive and responding
2. The virtual sensors configured have all required reporters that are needed

as input.
Virtual sensors rely on other sensors as inputs. This test will verify each

virtual sensor has all its required reporters.

The test also checks the optional reporters. These reporters are not

mandatory but may be added for increased accuracy. If an optional reporter

is missing the test will not fail but a notification/warning will be shown to

the user.

Test

Indication to

user

Pass:

FW is alive and all virtual sensors have all their defined inputters configured

correctly

Fail:

1. ISH FW not alive/responding, Please verify CSE/ISS compatibility,
debug may be needed

2. Missing mandatory reporter:
a. Error: Check in PDT the virtual sensor mandatory reporters.
b. Warning: User may want to add the optional reporter for

better accuracy.

Figure 2-2. Example of “BIST Level 0” Functionality

Intel® Integrated Sensor Solution Utility

CDI/IBP#: XXXXXX Intel Confidential 13

Table 2-3. BIST Level 1 Connectivity

Level BIST Level 1: Connectivity

Test Specifics BIST level 1 tests connectivity test to each sensor and the GPIO

configuration.

Checks that FW can reach each physical sensor:

• A register is ready from each sensor and its value tested against the
expected value.

Checks GPIO configuration:

• BIOS GPIO table matches PDT configuration.

Test Indication

to user

Pass: GPIO and sensors are configured correctly, Soldering/BUS lines are

working properly.

Fail:

• ISS could not reach all the sensors: Sensor is not reachable/configured
correctly - check soldering or check the settings in PDT are correct.

• uDriver could not generate a GPIO interrupt for that sensor - check with
Intel/Vendor GPIO configuration.

• BIOS config failure: GPIO that is configured in PDT for this sensor is not
assigned in BIOS for ISH - Check BIOS config table.

Figure 2-3. Example of “BIST Level 1” Functionality

Intel® Integrated Sensor Solution Utility

14 Intel Confidential CDI/IBP#: XXXXXX

Table 2-4. BIST Level 2 Calibration

Level BIST Level 2: Calibration

Test Specifics BIST level 2 checks required calibration data exists for sensors and is in

the correct format.

If calibration is not required for a sensor, success is returned.

Test Indication

to user

Pass:

Calibration configured correctly - note this does not mean calibration

values are correct, just that they are present and in the correct format.

Fail:

Check PDT for missing calibration or for wrong calibration format.

Figure 2-4. Example of “BIST Level 2” Functionality

Table 2-5. BIST Level 3 Sensors BIST

Level BIST Level 3: Sensors BIST

Test Specifics BIST level 3 runs vendor defined sensor BIST.

This test is not a mandatory test, some sensors may not have BIST level

3 available.

Test Indication

to user
Pass: Test completed successfully.

Fail: Need to contact Intel/Vendor. Each test is sensor specific and failure

may mean different things for different sensors.

Intel® Integrated Sensor Solution Utility

CDI/IBP#: XXXXXX Intel Confidential 15

Figure 2-5. Example of “BIST Level 3” Functionality

Intel® Integrated Sensor Solution Utility

16 Intel Confidential CDI/IBP#: XXXXXX

2.8 ISSU -INFO Functionality

The -INFO functionality retrieves various information about Intel® ISS.

It can be used for triage and for gathering information for triage.

Table 2-6. -INFO [-arguments]

Option Description

No option Reports information for all components listed in table below

-h|-?* Returns the help screen for ISSU –INFO

*Note: “-?” is not supported in EFI version

-EXP Shows detailed examples of how to use the INFO command

-BOM Retrieves sensor LIUD and sensor model for all physical sensors on the

system in order to get a clear BOM on the current system

-SensorList

<bin-file-path>

Retrieves sensor related information from uncompressed ISS binary file

and save to local file

Examples:

• ISSU -INFO -Page

• ISSU -INFO -BOM

The -INFO command will return information as specified in the table below:

Table 2-7. -INFO Command Returns

Feature Name Field Value

Integrated Sensor Solution FW state Responding / Not Responding

Integrated Sensor Solution FW status FW is Running / Sensor Core loaded / PDT loaded /

Sensor Core running

Integrated Sensor Solution FW version Version string

Intel® Integrated Sensor Solution

Driver version *

Version string

ISS Dynamic Bus Enumerator version * Version string

HID PCI Minidriver for ISS version * Version string

PDT version Version string

Vendor defined data version Version string

Intel® Integrated Sensor Solution Utility

CDI/IBP#: XXXXXX Intel Confidential 17

Feature Name Field Value

Sensors Information Information on the various Sensors configured on

the platform.

For each sensor (physical and virtual):

• Sensor LUID

• Sensor name

• Vendor

• Sensor model

• Bus type

• Bus address

• Calibration status (set/not set)

*Note: Linux and EFI version won’t show such information

Figure 2-6. Example of -INFO Output

Intel® Integrated Sensor Solution Utility

18 Intel Confidential CDI/IBP#: XXXXXX

Figure 2-7. Example of -BOM Output

Intel® Integrated Sensor Solution Utility

CDI/IBP#: XXXXXX Intel Confidential 19

Figure 2-8. Example of -SensorList Output

Note: The input binary file ISS.bin should be decompressed ISS binary instead of the
compressed one. For details of how to get decompressed ISS binary, please refer to
appendix B.

2.9 ISSU –PDT Functionality

Intel® ISS uses a configuration file called PDT. This file contains all the system
topology and configuration and also the calibration parameters that are used by

Intel® ISS. The PDT command allows you to get or set the PDT on the SPI flash.

Sample PDT files can be found in kit release\FW\bin\PDT\Bare_PDTs, and it’s needed
to add “.bin” extension when set the PDT binary.

In order to get the current PDT that is stored on the flash use:

Table 2-8. –PDT [-arguments]

Option Description

No option Returns the help screen for ISSU –PDT

-H|-?* Returns the help screen for ISSU –PDT

*Note: “-?” is not supported in EFI version

-EXP Shows detailed examples of how to use the PDT command

-SetPDT <bin-file-

path>

Writes the PDT from bin-path-file to ISH

-GetPDT <bin-file-

path>

Reads the PDT file currently on the NVM and exports it to bin-file-

path

Intel® Integrated Sensor Solution Utility

20 Intel Confidential CDI/IBP#: XXXXXX

Examples:

• ISSU –PDT –SetPDT <bin-file-path>

• ISSU –PDT –SetPDT <bin-file-path> -Verbose

• ISSU –PDT –GetPDT <bin-file-path>

Figure 2-9. Example of “GetPDT” Functionality

Figure 2-10. Example of “SetPDT” Functionality

Intel® Integrated Sensor Solution Utility

CDI/IBP#: XXXXXX Intel Confidential 21

Note: In Windows and Linux, the tool support relative path for <bin-file-path>. E.g. if

user specify only the file name “pdt.bin”, it should be in current folder where you run
the command. While in EFI, it only support absolute path for <bin-file-path>. E.g. if
user specify only the file name “pdt.bin”, it would in the root folder \pdt.bin. To put
the binary file info specified folder, \<path_to_folder>\pdt.bin should be used as

<bin-file-path> argument to the tool.

2.10 ISSU –I2C Functionality

Intel® ISS uses several I2C buses to communicate with sensors or output debug

information. ISS provided functions to calibrate I2C bus speed. The tool would send
specific I2C bus calibrating request to ISS and parse the result.

Table 2-9. –I2C [-arguments]

Option Description

No option Returns the help screen for ISSU –I2C

-H|-? Returns the help screen for ISSU –I2C

*Note: “-?” is not supported in EFI version

-EXP Shows detailed examples of how to use the I2C command

-Calibrate <busId> Request to calibrate specific I2C bus and show the results

-UpdatePDT Save I2C calibration results in PDT and reset ISS

Examples:

• ISSU –I2C –Calibrate <busid>

• ISSU –I2C –Calibrate <busid> -UpdatePDT

Figure 2-11. Example of “I2C Calibrate” Functionality

Intel® Integrated Sensor Solution Utility

22 Intel Confidential CDI/IBP#: XXXXXX

Figure 2-12. Example of “I2C calibrate and update PDT” Functionality

2.11 ISSU –NVM Functionality

Intel® ISS can store last 3 exceptions, 2 error log files and 2 user data files into NVM.
The NVM command allows you to retrieve these files from the SPI flash and save to

binary file, together with parsing exceptions to readable string.

In order to get/parse the files that are stored in NVM use:

Table 2-10. –NVM [-arguments]

Option Description

No option Returns the help screen for ISSU –NVM

-H|-?* Returns the help screen for ISSU –NVM

*Note: “-?” is not supported in EFI version

-EXP Shows detailed examples of how to use the NVM command

-GetErrorLog0 <bin-

file-path>

Reads error log file 0 currently on the NVM and exports it to bin-

file-path

-GetErrorLog1 <bin-

file-path>

Reads error log file 1 currently on the NVM and exports it to bin-

file-path

-GetUserData0 <bin-

file-path>

Reads user data file 0 currently on the NVM and exports it to bin-

file-path

-GetUserData1 <bin-

file-path>

Reads user data file 1 currently on the NVM and exports it to bin-

file-path

Intel® Integrated Sensor Solution Utility

CDI/IBP#: XXXXXX Intel Confidential 23

Option Description

-GetExceptions <bin-

file-path>

Reads the exceptions log file currently on the NVM and exports it to

bin-file-path

-ParseExceptions

<bin-file-path>

Parse the exceptions information in bin-file-path to readable string

Examples:

• ISSU –NVM -GetErrorLog0 <bin-file-path>

• ISSU –NVM -GetExceptions <bin-file-path>

• ISSU –NVM -ParseExceptions <bin-file-path>

Figure 2-13. Example of “GetExceptions”/”GetErrorLog0”/”GetUserData1”

Functionality

Intel® Integrated Sensor Solution Utility

24 Intel Confidential CDI/IBP#: XXXXXX

Figure 2-14. Example of “ParseExceptions” Functionality

Note: In Windows and Linux, the tool support relative path for <bin-file-path>. E.g. if

user specify only the file name “exc.bin”, it should be in current folder where you run
the command. While in EFI, it only support absolute path for <bin-file-path>. E.g. if

user specify only the file name “exc.bin”, it would in the root folder \exc.bin. To put
the binary file info specified folder, \<path_to_folder>\exc.bin should be used as
<bin-file-path> argument to the tool.

Appendix A: Error List

CDI/IBP#: XXXXXX Intel Confidential 25

3 Appendix A: Error List

Here is the error list returned by the tool for BIST:

Error Test
Level

*

Explanation Possible Reason Note

0: Test

passed

any Sensor self-test

passed

1: Test failed any Sensor self-test

general failure

2: Test
unsupported

any Sensor does not
support the

particular test

3: Sensor
not active

any Sensor is not
initialized or not
ready

1. One of the LUID
parts is not
supported on
platform

2. There is a problem in

PDT that causes
sensor to fail in
initialization

6: Missing

calibration

2 Sensor has no

appropriate
calibration data

1. Sensor doesn’t have
calibration data
configured

2. Sensor’s calibration

data has wrong
format

For physical

AGM/ALS
sensors only

7:

Connectivity
failure

1 Sensor

connectivity test
failed

 Returned only

on CHT and
SKL, Following
generations use
errors 9-11

9: GPIO

BIOS
configuration
failure

1 Sensor GPIO

BIOS
configuration
error

The sensor GPIO ID is

not allocated for ISS in
the BIOS

Replacing error

7 starting
APL,KBL

10: GPIO
connectivity
failure

1 Sensor
connectivity test
failed for GPIO

Sensor supports GPIO
configuration but fails to
configure GPIO for

receiving interrupt (GPIO
ID that is not connected
\ configured to the
sensor)

Replacing error
7 starting
APL,KBL

Appendix A: Error List

26 Intel Confidential CDI/IBP#: XXXXXX

11: I2C
connectivity

failure

1 Sensor
connectivity test

failed on I2C

Sensor is disabled in
switch

Replacing error
7 starting

APL,KBL

* Note that errors appearing in test level x will also appear in test levels greater than

x since up to test level 3, the lower test levels are also called. I.e. test level 2 also
calls tests 1 and 0 therefore an error that is relevant for test level 1 might appear
when calling test level 2 or test level 3.

Here is the general error list returned by the tool:

0 : Success

1 : Command is currently not supported

2 : SMHI command failed

3 : Please wait, Working in progress

4 : SMHI error: Invalid parameter

8192 : General error

8193 : Cannot locate Intel® Integrated Sensor Solution driver

8194 : Memory access failure, please contact Intel support

8195 : Write register failure

8196 : Memory allocation failure, please contact Intel support

8197 : Circular buffer overflow

8198 : Not enough memory in circular buffer

8199 : Transmission error to Intel® Integrated Sensor Solution

8200 : Unsupported TXE bus message protocol version

8201 : Unexpected interrupt reason

8202 : Intel® Integrated Sensor Solution timeout occurred

8203 : Unexpected result in Intel® Integrated Sensor Solution response, please
contact Intel support

8204 : Unsupported message type

8205 : Cannot find host client

8206 : Cannot find Intel® Integrated Sensor Solution client

Appendix A: Error List

CDI/IBP#: XXXXXX Intel Confidential 27

8207 : Client already connected

8208 : No free connection available

8209 : Illegal parameter

8210 : Flow control error

8211 : No message

8212 : Requesting Intel® Integrated Sensor Solution receive buffer size is too large

8213 : Requesting Intel® Integrated Sensor Solution receive buffer size is too small

8214 : Circular buffer not empty

8215 : Cannot access Intel® Integrated Sensor Solution device

8216 : Invalid command-line arguments

8217 : Failed to read or write file

8218 : Invalid PDT file length

8219 : Invalid PDT file extension, PDT format is xxx.bin

8220 : Failed to get driver version

8221 : Unsupported OS

8222 : No required privileges, run as Administrator

8223 : Invalid sensor luid format

8224 : Failed to get device address

8225 : Failed to load driver (PCI access for windows)

8226 : Bist failed

8227 : Could not execute BIST: no sensors configured on the device. Please check

the PDT configuration

8228 : Unknown response from SMHI

Appendix B: Get Decompressed ISS Binary File

28 Intel Confidential CDI/IBP#: XXXXXX

4 Appendix B: Get Decompressed

ISS Binary File

Use FIT tool to get compressed ISS binary from IFWI:

> fit.exe –f InputIFWI_xxx.bin –save Decompose.xml

Find ISHC.bin in Decomp folder:

Use MEU tool to get decompressed ISS binary:

> meu -decomp CodePartition -f ISHC.bin -save iss.xml

The get the ish_main.bin which is uncompressed ISS binary:

Appendix B: Get Decompressed ISS Binary File

CDI/IBP#: XXXXXX Intel Confidential 29

Specify Lzma binary path “LzmaToolPath” in meu_config.xml, to tell meu.exe how to

decompose ISHC.bin.

An example of meu_config.xml:

 <?xml version="1.0" encoding="utf-8"?>

<MeuConfig version="2.10" >

 <PathVars label="Path Variables">

 <WorkingDir value="./" label="$WorkingDir" help_text="Path for environment
variable $WorkingDir" />

 <SourceDir value="./" label="$SourceDir" help_text="Path for environment

variable $SourceDir" />

 <DestDir value="./" label="$DestDir" help_text="Path for environment variable
$DestDir" />

 <UserVar1 value="./" label="$UserVar1" help_text="Path for environment
variable $UserVar1" />

 <UserVar2 value="./" label="$UserVar2" help_text="Path for environment

variable $UserVar2" />

 <UserVar3 value="./" label="$UserVar3" help_text="Path for environment
variable $UserVar3" />

 </PathVars>

 <SigningConfig label="Signing Configuration">

 <SigningTool value="OpenSSL"

value_list="Disabled,,OpenSSL,,MobileSigningUtil" label="Signing Tool"
help_text="Select tool to be used for signing, or disable signing." />

 <SigningToolPath value="$SourceDir\..\openssl\openssl.exe" label="Signing

Tool Path" help_text="Path to signing tool executable." />

Appendix B: Get Decompressed ISS Binary File

30 Intel Confidential CDI/IBP#: XXXXXX

 <SigningToolXmlPath value="" label="Signing Tool Config XML Path"

help_text="Configuration XML template for MobileSigningUtil. Leave blank if not using
MSU." />

 <SigningToolExecPath value="" label="Signing Tool Execution Path"

help_text="Specify a directory from which the signing tool should be executed. This
can be useful if relative paths are used in the Signing Tool Config XML. If no path is
provided, the signing tool will be executed from the same directory as this tool was
executed. Leave blank if not using MSU." />

 </SigningConfig>

 <CompressionConfig label="Compression Configuration">

 <LzmaToolPath value="$SourceDir\..\lzma\lzma.exe" label="LZMA Tool Path"

help_text="Path to lzma tool executable." />

 </CompressionConfig>

</MeuConfig>

§ §

